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By Floyd R. Schlechte
SUMMARY

A theoretical analysis is made of the creep collapse of idealized
H-section columns and solid rectangular-section columns by the applica-
tion of a creep variational theorem. For the rectangular-section columns
two assumptions are considered. In one case the stress distribution
through the thickness is assumed to be linear. 1In the other case this
stress distribution is allowed to take a nonlinear form. Charts are
given for the critical lifetime parameters based on these various
theories.

Comparisons are made between the theories for the rectangular-
section columns and previously published test data. The comparisons
indicate that the linear-stress theory gives nearly the same result as
the nonlinear-stress theory. In addition, the refinement in stress
distribution does not always improve the comparisons between theory
and test. In many cases, the results obtained from the isochronous-
tangent-modulus method are about as good as the results obtained from
the more involved theoretical methods.

INTRODUCTION

The phenomenon of aerodynamic heating associated with the use of
high-speed airplanes and missiles has motivated a number of studies of
materials and structures at elevated temperatures. Among these studies
are attempts to relate material creep properties to the creep behavior
of structural compression elements. The present paper is concerned with
this problem in regard to column behavior.

Design procedures are available for creep buckling. Methods which
are entirely empirical predominate and ordinarily use static-buckling
criteria with the tangent modulus replaced by its equivalent from isoch-
ronous stress-strain curves. Other approaches usually lead to methods
which trace the displacement history starting with an initial
imperfection.



Many papers have been written on column creep buckling. Results of
a number of elevated-temperature creep testis on rectangular-section
colums made of aluminum alloys are given in references 1 to 4. According ~
to data in these papers, column lifetimes of apparently identlcal columns
under identical loads may differ by a factor of two or three. Such wide
scatter increases the difficulty of making clear-cut comparisons between
theory and experiment.

The theoretical column-creep analyses presented in references 5
to 8 are displacement-type analyses. In references 5 and 6 the creep
behavior of an idealized H-section column 1s analyzed by using a power
creep law and tabulated results for column lifetime parameters are given.
In references 7 and 8, H-section and solid rectangular-section columns
are analyzed by using an exponential creep law which was modified in an
attempt to account for creep behavior under varying stress. 1In all these
displacement-type analyses, the differential equations were derived
directly from statics. The length coordinate of the column was eliminated
by assuming a deflected shape and by satisfying the differential equations
at the column midheight only.

CON W

Approximate solutions which satisfy basic equations on an average
over a region are obtained when variational methods are used. One varia-
tional theorem applicable to creep of columns is presented in reference 9.
It yields as Euler equations the time derivatives of static equations of
equilibrium, stress-strain relations, and boundary conditions. This var-
iational theorem is analogous to the theorem for elasticity given in ref-
erences 10 and 11. In reference 12 a derivation of this creep variational -
theorem is presented which starts with the theorem of references 10
and 11; in addition, the H-section column is analyzed in reference 12
by using the theorem, and little difference is found between the results
obtained from the variational theorem and previous work in references 5
and 6 done by collocation.

The present paper is a further application of the creep variational
theorem of reference 9 to the analysis of creep behavior of columns.
The theorem is applied to a solid rectangular-section column in which
a nonlinear stress distribution is permitted through the thickness.
For comparison, solutions are also presented for the idealized H-section
column and the rectangular-section column in which the stress distribu-
tion is constrained to remain linear through the thickness. Also
included for purposes of comparison is an engineering method - the
so-called isochronous-tangent-modulus method. Four sets of existing
experimental data on column-creep tests and material creep properties
from references 1 to 4 are included in a comparison with theory. The
investiration was carried out to determine whether these various
refinements improve the agreement between theory and experiment. -
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SYMBOLS

A area of cross section
ay numerical-integration coefficient
B constant in creep law
B* = B2
A
b width of rectangular-section column
C constant in creep law
cy nondimensional coordinate for numerical integration
E Young's modulus
(o) function of stress (see eq. (2))
g(t) function of time (see eq. (2))
h thickness of rectangular-section column
hy distance between flanges of idealized H-section column
I modified Bessel function of first kind
k constant in creep law
1 length of column
N number of stations through thickness of column
n constant in creep law
P compressive load
Py Euler buckling stress of column
Pp modified Euler buckling stress of column
s lateral-displacement parameter for rectangular-section

column, 6B*W



lateral-displacement parameter for idealized H-sectlon
column, 2B*W;

temperature

time

displacement coefficient in equation (4)
displacement of neutral surface in x-direction
volume

displacement coefficient in equation (3)

displacement coefficient in equation (7)

displacement of column in z-direction, with initial crooked-
ness included

coordinates
dummy integration variables

Kronecker delta

strain, positive in tension

creep strain

quantity to be varied

radius of gyration

stress, positive in tension

average column stress, positive in compression

difference between stress at a point in column and average
stress on column, positive in compression

(UB,elem)max maximum value of og for cross section calculated by

elementary beam theory

60,01,02,05,04,053 stress coefficients

P S VRV L |
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o constant in creep law
n
1)2 n(Ai*)
T time parameter when power law is used —_—) =g
b ’ np 1 - P
E
Tg time parameter when hyperbolic sine law is used,
1 \? CB*cosh B* _
np _r
E

¢O’@l’¢2’¢3’$hj’¢5j integrals involving the creep law

n
* _ (ac*) P54
cp53 _(P) n

W(ﬁi) function of z/h;, defined by equation (6)

Subscripts and superscripts:

cr critical

i,3 integers

o built-in or initial crookedness

P power creep law

s hyperbolic sine creep law

b’ differentiation with respect to x

Dots over quantities denote time derivatives.

ANALYSIS

General Discussion

In order to exhibit the various stages of refinement possible in
an analysis of the creep collapse of columns by using variational methods,



several problems are considered. The analysis 1s applied to idealized
H-section columns and solid rectangular-section columns by means of a
creep variational theorem. The idealized H-section column is treated
first, and then consideration is given to a solid rectangular-section
column where the stress distribution is required to vary in a linear
fashion through the column thickness. For both the H-section column
and the solid rectangular-section column, solutions are presented for
the two creep laws - the hyperbolic sine law and the power law. Finally,
the solid rectangular-section column is treated by allowing the stress
distribution to be nonlinear through the thickness. In this case the
solution using the hyperbolic sine creep law becomes rather involved,
and only the solution with the power law is carried to completion.
Throughout these analyses the collocation approach has been abandoned
and has been replaced by the more refined variational theorem.

A Rayleigh-Ritz procedure is used in conjunction with the creep
variational theorem of reference 9. It 1s assumed that the strain dis-
tribution through the column thickness is linear. The load 1s assumed
to be applied quickly enough so that no creep occurs while loading, yet
slowly enough so that dynamic effects may be neglected. The load is
then assumed to remsin constant until the column collapses. The varia-
tional theorem states that the expression

-y . . . 2 ..
I = \/ﬂ [}(ux + gy - ZWgy ) + % vyl - %ﬁ - ce{]dv (1)
v

when varied with respect to the time derivatives of quantities yields
the desired column creep equations.

The material creep relations used in this report have the form
" = £(o) g&(t) (2)
where f(o) 1is a function of stress alone and g(t) is a function of
time alone. These relations apply only for constant temperature and
constant stress conditions. In this investigation, however, it is assumed

that these creep relations apply also in the case of varying stress. For
the hyperbolic sine law the function f(o) 1is given by

f(o) = C sinh Bo

where B and C are material constants. The power law gives f(c) as

- ()

LI



JO W\~

where o* and n are material constants. The function g(t) provides

an approximate way to account for primary creep. In the calculations
made in this investigation, g was taken in the form

g(t) =tk

1]

k-1

g(t) =kt

where k 1is a material constant.

The lateral displacements of the middle surface of the column are
illustrated in figure 1(a). The symbol w, represents the initial

lateral displacement or initial crookedness of the column. The lateral
displacement at the instant after load is applied and before creep begins
is represented by w(0). The symbol w represents the lateral displace-
ment as creep progresses. The initial crookedness is included in w(0)
and w. It is assumed that a sufficiently accurate approximation to

the displacement shape of the column is given by a sine curve

w = h W(t) sin ’-‘ZL (3)

The displacements of points on the neutral surface in the x-direction
are assumed to be given by

u =X U(t) (u)

Jdealized H-Section Column

Consider the idealized H-section column shown in figure 1(b). This

column has two flanges each of area % separated a distance h; by a

web flexible in bending in its own plane. The stresses are assumed to

be given by
G = E [%O + 0y ¢<ﬁt> sin %%} (5)
where
W(i%—) - +1
(6)

(JE. +£)
hy 2
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The displacements are given by equations (3) and (h) with h and W
replaced by h; and Wy. The quantity to be varied becomes

ZI nthy \8 . {xhy\2
i - - (Mh1\E 2 oax |, (__;) 1 gqp2 1x
= PK/; lco[; + wlwl<_7_) cos ;} + clwl 7 n sin >
On - o/mhy\2 512 .
% 2(_;) 2@_1(-2 _;_-2:9:)
+ 5 Wy ; coSs > TR ap= + m sin : dx .
3
N S - P 5g Z\ sin EX >
P oog\/; (o) av A Ulg\/; W(hl) sin &3 (o) av (7) 8

When the integrations are performed and the nondimensional quantities

f £(o) Qv
v
(8)

‘/; W(ﬁ%) sin E% (o) av .

are introduced, equation (7) becomes .

2 \2
. . . T(hl 1 . . /'Tthl 1
I =Pl qoniU + WW <———) =| + W ’———) =
L o[ 11\ QJ W17 8

z}-

Py =

zl-

P

. o .. ..
gn°~ - 7= - 0p8%p - 01891 (9)

The appropriate equations for the column are obtained by setting equal

to zero the partial derivatives on  om oI ard éﬂ—. Thus, the

ou" Wy ddg’ 361
equations obtained are
dg = O (10a)
. 1 1 7 1
oW 5+ 01 5 + oWy 5 = 0 (10b)

EA ¢ P . - EA
EA E Gy - g B = 10
U+ Wl = - dp - &5 ¥ =0 (10c)
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. o .
BBy -0 (104)

If U is not required, equation (lOc) may be ignored; then, equa-
tions (10a), (10b), and (10d4) may be combined with the use Of the elas-
tic 1n1t1al condltlons

w1 (0) = wl’c; (11a)
1- L2
Pg
0o(0) = -1 (110)
01(0) = 4w, (0) (11c)

to form the differential equation

Fe-He-= o

The creep law must be prescribed in order to obtain solutions to
equation (12). For the hyperbolic sine law which is given as

ég = E + gC sinh Bog (13)

the function of stress is
f(g) = C sinh Bo (14)

and the required integral involving this function is

q’l=1Tl' ff C\V 51n£’ﬁsinh B*[-]_+W<-hil> LWy sinltzl dx dA

g cosh B¥ Il<2B*Wl) (15)

where Il is the modified Bessel function of the first kind and

= ==. With use of the nondimensional parameters
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81 = EB*W]_
(16)
212 CB*cosh B*
e e
5 P
TP 1 . b
Pg
equation (12) may be written as
dsy
— = 2I4(s 1
& 1(51) (a7)

The time parameter Tg as a function of the lateral-displacement param-
eter s 1is

1
1 f da, (
TS = - 1.8)
where the parameter s,(0) is given by
2B*W
s1(0) = .__lP:B (19)
1 - 1.
Pg
The critical time parameter is
Ts,er = % \/ﬂw do. (20)
’ Sl(O) Il(a')

The integration indicated in this equation can be carried out readily
by numerical methods.

The analysis for the power creep law is given here for the sake of
completeness, although results have been presented already in refer-
ence 12, The function of stress is

£(o) = <i§>n (21)

g

In the cases considered herein, n will be restricted to odd integers
in order to simplify integrations. The integral required with this
creep law is

OWW
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1 n
P\® 1 2 nx 2z X
=(E2\ L 2\ gin X |1 + v/2). Xl 4x aa
(Ao*) Iy} -[Afo W(hl) e W(hl) Wy sin 1]

() e

11,5 (n - m[(i : 1)1]2

The differential equation obtained for the idealized H-section column
with the power creep law is

It

n
a1 z (n - 1)1(1 + L)wpt

= = = 2
dTp 2 2 (23)
1=1,3 (n - 1)1[(1-__"2'_1>1]
where
2 "ae%)
= (L) o/
Tp = (np) — B g (24)
Pr
and the critical time parameter is
® awy
T = (25)
p,cr Jf
’ Wl(O) N Il

}: (n - 1)1(1 + 1)wli

1=1,3 (n - 1)1[(i ; 1)1]2

where Wl(O) is given by equation (11a). Evaluation of the integral in

2

equation (25) can be carried out easily for n =3 and n = 5. Numeri-
cal integration is more convenient for larger values of n.

An idealized H-section column having the same cross-sectional area
and moment of inertia as a given rectangular-section column is called an

equivalent H-section column in this paper. For this case, h; = L and,

E]

of course, each flange has one-half the area of the rectangular-section
coluun. Note, also, that for the equivalent H-section column W; = VS W
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S50lid Rectangular-Section Column With Linear
Stress Distribution Through the Thickness
Consider a solid rectangular-section column of width b, thickness
h, and length 1 as shown in figure 1(c). Assume that stress as well
as strain varies linearly through the thickness. The stresses are

assumed to be given by

P .
g = [—\(02 + 03 ﬁ sin ?tl—x) (26)

For the stresses given by equation (26) and the displacements given by
equations (3) and (4), the quantity to be varied is

Pb h/2 wth 2 « «3{nth 2 2 2
I = o .10 + ww ) coge X +ow(_)(é) sinc IX
N 2 1 7 °\7T/ \h l

On . 2 2
2 vy2/nh 2nx _ _P |52 .22 inc IX
+ 5 W <—Z) cos &L —QEAIG2 + 0z (] > sin : dx dz

-k dgg'f f(o) av - = ojgf Z sin IX £(g) av (27)
A v 1

After integrations are performed and the functions
3

Po =Aiz _/;, (o) av

= — — —— V
(95 = A f ] Sln f( 0) d

are introduced, equation (27) becomes

= oo ()7 2] () & 0 o)}
2 . 2

P62 PG§ . . ..
SEA  homa - (28%2 © 958% (29)

MMANAN
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As before, the column equations are obtained by equating to zero

the partial derivatives §¥, on éﬂ—, and ég-. Thus, the following

)

3 Wy 355
equations are obtained:
62 =0 (308.)
sl oo 1 ;1 _
0'2W -2— + 0'3 -2-)1- + 02W E = (§Ob)
EA (4 6 W B - 6p - BA goo = 0 (30¢)
P P - %" F &2
- Py -1 FA
W= 0z == - 2 = =0
S 335 = 893 (304)
Initial conditions for this problem are
3
w(o) = Yo
1 -2
Pg
| (31)
03(0) = 12w(0))

Equation (30c) may be ignored unless the calculation of U 1is desired.

Equations (30a), (30b), and (30d) may be combined with equations (31) to
give

("%)2(1 - FPPS g‘; = 295 (32)

When the hyperbolic sine creep law (eq. (13)) is used, ¢5 1s written as

1 ph/2 -
C 2 ain NX * 2 qipq AX
= = £ gin &£ sinh|B (—l + 12W £ sin ——) dz dx
5 hzfof_h/eh ) L h z]

s
= C cosh B* —lé J[ B I1(B) ap (33)
2s 0
where
S = 6B*W
i (34)
B =-s n
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and where Il(B) is the modified Bessel function of the first kind of
order one. With the use of equation (33) and the definition for Tg

in equation (16), equation (32) becomes

S
6f B I;(B) dB
ds 0
g2

dTg

(35)

The critical time parameter for the rectangular-section column having
linear stress distribution through the thickness and following the hyper-
bolic sine creep law is

o0 2
Ts,or = = f ey (36)
¢ Je(0) 17 B I;(B) dp
0
where
6 *,
s(0) = & W% (37)
1 - =—
Pg

When the power creep law is used, Pz is written as

h/2 1 n
f Z gin ™% 1 + 12W 2 sin XX} 4x dz
o B 1 h 1

/.
_(EP\P1L N at(1 + 1)(3w)t
( *> b %’3 (n-i)![(izl)l]e(i+2) o

and equation (32) becomes

n .
a1 Z (n - 1)1+ 1)) (39)
ar 2 i +1\.1%
p,cr 11,3 (n - i)![(——z )l] (1 + 2)
The initial condition is
W
w(o) = —2— (40)

7
b

O W W
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and the critical time parameter is

. o aw (k1)
p,cr /;,(o) L Ry (n - 1)1(1 + 1)(3w)t

i=1,3 (n - i)l[(i ; l) 1]2(1 + 2)

Equations (36) and (41) can be solved in the same way as were equa-
tions (20) and (25).

2

Solid Rectangular-Section Column With Nonlinear Stress
Distribution Through the Thickness

In the previous solutions, the shape of the stress distribution
is fixed from the beginning. For the case treated in this section a
rectangular-section column is analyzed by allowing the stress distri-
bution through the thickness to be arbitrary. In the quantity to be
varied in the variational theorem (eq. (1)) the integrals through the
column thickness are replaced by summations corresponding to numerical
integrations. The equations which follow are set up on the basis of
the Gaussian quadrature formula. (See ref. 13.) Similar results would
be obtained by using other quadrature formulas.

The z-coordinate distance from the centroidal axis to any station. J
across the thickness is hcj. The stress at a distance hcj from the

centroidal axis is

oy = {‘("h + 05y sin "Z—x> (42)

and displacements are given by equations (3) and (4). The quantity to
be varied becomes

N
l . . 2 2 . h2
H:PZ& f (d+c’x sinﬁl}HWWﬂ cos XX 4W(LR) ¢ sini’-{,
J_lJ o JUBT 5 z) (z) l (z> J z

. 2 . . . . 2
1 X 2(fh> tx _P 2 o X 2 nx)
X in &2 )Wl 2A _ L |(g 20, 0 sin == +g¢ sin &£
* 2(°l++c5j sin S 1) % T 2EA(1+ T %5 15 1
J

- g 6h+'65 sin %¥>f(cj) ax (43)
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where aj represents the Gaussian quadrature coefficients. When some
of the integrations over x are performed, the result is

JL . |- . 2 . . * [sth 2 2
cn i) 8] oo () 0

j=1

* (U“ F* % %We(,%)e - E%(éhz Lv oo, 2v 11?)

- 6,EPy 3 - 954805 (k)
where
1 L )
’ (45)
1
P55 = _]Z: fo sin & — f(cj)de

The remainder of the analysis is simplified if it is assumed at this
point that the average stress on the cross section is independent of
time; that is,

&, = O
and

0’)+=-l

Equating to zero the variation of II with respect to ﬁ ﬁ and 653

is equivalent to equatlng to zero the partial derivatives of II with

respect to U W and o© Use of this procedure yields the following
5J°

equations;:
N

z 8.3653 =0 (14-68.)
3=1

OW W
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N
‘ . 2 . o4 1 1 2\l _
2 a3[05dw3??+ Os54cy 5 + (04 5+ 05y 3_“)w:l =0 (46b)
=1
A “fmh)\2 2, ofmh\2 1 P - 1 :
U -R+ WW(“-Z—> 3;"‘ W(-Z—') CJ § - E—-—A- 0'53 E - g(p5j =0 ()4'6C)

Equations (46) may be solved for W and 653 in terms of @53. In

order to accomplish this solution, the following properties of the
Gaussian quadrature coefficients are used:

N
z&'j:

J=1

N
zd ajcy = 0 4 (47)

\

Ce
(=

If equation (46c) (representing N equations) is multiplied by
a3 and summed over J from 1 to N, the result is

-

22 . wafxh)e 2 _ -

U-E+WW(£Z—) = = & Z a3Ps (48)
J=1

Equations (48) and (46c) may be solved for 653 with the following
result:

N
. _ CEA + (h\© 1,
i=l



18

Equation (46b) may be written as
N

W = Z ajcjc}5j (50)

3=1,2

With the use of equation (49), equation (50) becomes
N

2 .
1 PN\s o 1
<Tf> <1 - __}w = 2% % 85 4Ps g (51)
j=1,2

Consequently, equation (49) may be given in the form

N
(£$>2<l ) %%\653 B 2é<:§ ) > Sﬁ (T * lefiggﬁai - 51$1®5i (52)
2

/ - 1
i=1 PE/

)

If the power law is taken as the creep relation, the integral ®5j
in equation (52) is

n

P55 = (K%Yl%— j;l sin %}5 Z (ril>(-l)n-i <d5j sin lt—lx>ldx

i=0,1

n!(i + l)(zgi)i

i=1,3 (n - i)! [(52_1),]2

s s n-1 nx[(%>:]2(2o5j)i (53)
xox (n - i)1il(d + 1)1

With

(54)

W
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equations (51) and (52) become, respectively,

N
aw \
3=1,2

do P 12c.c
2J 2(._.}5..) __1_3-_ . *
dr_ ~ “\P /, 1+ 1. P aj - 8131951 (56)
i=1,2 Pp
Initial conditions for this case are
- N
Ww(0) = —° __
-7
E 3 (57)

05J(0) = lEcJW(O)

Equations (55) to (57) give N + 1 first-order differential equa-
tions and their initial conditions. These differential equations may be
solved by a numerical method. When N = 2 and Gaussian quadrature
formulas are used, equations (55) and (56) reduce to equation (23) which
in this case applies to an idealized H-section column having the same

area and moment of inertia as the rectangular section, that is, the equiv-

alent H-section column.

Isochronous-Tangent-Modulus Method

An engineering method which has been used for predicting column
creep collapse is the so-called isochronous-tangent-modulus method. In
this method it is assumed that collapse occurs when the stress corre-
sponding to the tangent modulus from an isochronous stress-strain curve
becomes equal to the average column stress. If the column material fol-
lows the creep law which is given as

€ =

% + (o) g(t) (58)

and this equation is differentiated with respect to ¢ and is evaluated
at the average column stress P/A, the result is
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g’ﬂ(,:{ £ () e

where f' denotes differentiation with respect to P/A. At t = t,
according to the isochronous-tangent-modulus method, the result is

r

%]ﬁ{ 5 f'(z%) &(ter) = ;%T- (59)

where Ep 1s the tangent modulus on the isochronous curve corresponding
to to, at a stress of P/A. The Euler column formula is given as

P _ n%E_ (60)

(61)

Equations (59) to (61) can be combined to eliminate E and Ep. The
resulting equation is

np

(-L>2 : fr({;) ggcr) . ()
Pg

For both the hyperbolic sine creep law and the power creep law, the time
parameter is

P
> f"(—) t
T. Oor T, = _L) 2.__Ji_f§_2.
S P (np A P

E

When t = t,p, then 745 = Ts,er OF T

o = Tp,crs thus, the relation

OOWW H

\
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Ts,er = T ,er T 1 (63)

is the column failure criterion for the isochronous-tangent-modulus
method.

RESULTS AND DISCUSSION

Calculations

By using the hyperbolic sine creep law for the solutions of the
H-section column and the rectangular column with linear stress distri-
bution, critical lifetime parameters were calculated for a range of
lateral-displacement parameters s(0) from less than 0.1 to about 10.
These results are plotted in figure 2 which shows a comparison between
the rectangular section and its equivalent H-section. For lateral-
displacement parameters s(0) less or greater than those shown in fig-
ure 2, the lifetime parameters are given by asymptotic formulas derived
in the appendix. Calculations of critical time parameters were also
made by using the analyses with the power creep law for the equivalent
H-section column and the rectangular-section column with linear stress
distribution through the thickness. The values of n used were the
odd integers from 3 to 9, and the range of displacement parameter W(O)
corresponding to the elastic column with locad was varied from about 0.001
to 1. Results are given in figure 3.

For rectangular-section columns with nonlinear stress distribution
through the thickness, the system of differential equations (egs. (55)
and (56)) was solved numerically on an IBM type TO4 electronic data proc-
essing machine using the Runge-Kutta method. The power creep law was
utilized in this calculation. The required numerical integrations were
carried out by using Gaussian gquadrature formulas with 10 stations
through the thickness. The necessary quadrature coefficients and sta-
tion locations were obtained from reference 13. Displacements and
stresses were calculated as functions of the time parameter. The value
of the time parameter at which the displacement rate became essentially
infinite was taken as the critical time parameter.

Comparisons Between Various Theories
Based on Power Creep Law
In figures 4 and 5 the critical time parameters for rectangular

columns and nonlinear stress distribution are given as the circled and
squared points, and these nonlinear-stress results are compared with
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those for linear stress and for the equivalent H-section column. All
these calculations are based on the power creep law. Also given as the
uniform dash curve is an aspproximate nonlinear stress solution in which
the initial stress distribution is not quite linear. The uniform dash
curves were obtained from a single calculation of W as a function

of Tp for each value of P/PE starting with linear initial stress at

a very small value of W(0) (W(0) = 0.001). As an approximation, the
resulting stress conditions existing when W reached a given value
were assumed to be the initial conditions for the particular column
starting out with a value of W(0) equal to that given value of W.
The approximation is very good except when both W(0) and n are
large.

The ratio of the critical time parameter for the nonlinear-stress
solution to that for the linear-stress solution is given in figure 6
based on the power creep law. The individual data points were calcu-

lated by the more exact method discussed previously in which the initial

stresses are linear. The curves were arbitrarily faired through the
points. Except for large values of n and W(0) the effect of the
nonlinear stress distribution on column creep life is negligible. Thus,
for many cases an analysis based on the assumption of a linear stress
distribution should be sufficient.

Typical Stress Distributions

In figure 7 are shown some typical stress distributions through
the thickness of the rectangular-section column based on the power
creep law. The symbol op represents the difference between the stress
in the column at a particular value of z/h and the average stress on
the column. In order to emphasize the deviations from a linear distri-
bution, the curves are normalized with respect to the maximum value of
og calculated by elementary beam theory for the value of W 1indicated.

These particular stress distributions were obtained for W(O) = 0.001,
and the dashed-line curves indicate the initial stress distribution at
W(0) = 0.001, which is linear.

Column Lifetimes and Material Creep Data

Comparisons were made to determine the correlation to be expected
between column lifetimes calculated with different creep laws matched
to the same material creep curves. Constants for both the hyperbolic
sine law and the power law were obtained from compression creep data
in reference 1 on 7075-T6 aluminum alloy at 600° F. These constants
are listed in table 1. Both creep laws agree closely with the data

W W
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which are in the stress range from 4.5 to 5.5 ksi. It is characteristic
of these laws for the hyperbolic sine law to give the greater creep
strain outside the stress range of the data (either above or below) .

Column lifetimes were calculated by using both creep laws for
rectangular-section columns with linear stress distribution through the
thickness, and the results are given in table 2. The material creep
data were in the stress range from 4.5 to 5.5 ksi, as mentioned pre-
viously; and the two calculations agree very closely for average column
stresses between 4 and 5 ksi.

For thecoretical column creep analyses to be accurate, the creep
law should be accurate throughout the range of the stress which the
column experiences. Data are not ordinarily available from which a
creep law can be formulated that is accurate throughout such a wide
stress range. The calculated results in table 2 suggest that when only
limited material creep data are available, the best results for calcu-
lated lifetime may be obtained when the range of material creep data
covers the average column stress or is slightly above it.

Comparison Between Theory and Experiment

Column stresses for varlous creep lifetimes calculated from theory
are compared with experiment in figures 8 to 11. Four sets of material
and column data given in references 1 to 4 were considered in this com-
parison. The material creep data and column data have been screened so
that only those columns whose average stress fell in a certain range
were included. The stress range for the column data was taken to be
that between the highest stress in the corresponding material creep data
and a value about two-thirds of the lowest stress in the material data.
A1l the available column tests in this range were included provided there
was more than one test for a given value of 1/p. Material constants and
the range of the data from which they were obtained are given in table 1.
The theories used for the comparison include the rectangular-section
column both with linear stress distribution and with nonlinear stress
distribution through the thickness. Also included is the isochronous-
tangent-modulus method. Refinements in the theory have relatively little
effect on the theoretical results. Furthermore, the refinements do not
always lead to an improvement in the comparisons. In many cases, the
results obtalned from the isochronous-tangent-modulus method appear to
be about as good as the results obtained from the theoretical methods.

CONCLUDING REMARKS

A theoretical analysis has been made of idealized H-section and
rectangular-section columns by the application of a creep variational
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theorem. For the rectangular-section columns both linear and nonlinear
stress distributions through the thickness are considered. The solution
for the case of nonlinear stress distribution utilizes a power creep
law; the other solutions are given for both the power law and the hyper-

bolic sine creep law. Charts for critical lifetime parameters are given.

Comparisons were made between the theoretical solutions for the
rectangular column and previously published experimental data. The
isochronous-tangent-modulus method was also included in the comparisons.
The results indicate that the differences between the linear-stress and
nonlinear-stress solutions are rather small, a linear-stress solution
being sufficient in most cases. Refinement in the stress distribution
does not always improve the comparisons between theory and test and,
thus, does not appear worthwhile at present. Finally, in many cases,
the results obtained from the isochronous-tangent-modulus method were
about as good as the results obtained from the more involved theoretical
methods.

Langley Research Center,
Nationsl Aeronautics and Space Administration,
Langley Field, Va., May 21, 1959.
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APPENDIX

ASYMTOTIC FORMULAS FOR EXTREME VALUES OF

INITIAL LATERAL-DISPIACEMENT PARAMETER

When the argument is sufficiently small, the modified Bessel func-

tion I;(x) can be approximated by I;(x) = % (ref. 14). The integrals

in equations (20) and (36) can each be written as the sum of two inte-
grals - one from s{0) or sl(O) to s* and another from s* to w.

If s* is small enough for the approximation for Il(x) to hold with fair
accuracy, the following simplified expression for critical time results:

s¥*
Ts,or = 108g T+ Ty (s%) (A1)

where s 1s replaced by s; 1in the case of the idealized H-section

column. Numerical calculations indicate that sufficient accuracy results
when s* = 1. Approximate expressions for the critical lifetime param-
eter are given for the idealized H-section column by

Ts,er = 108 é% + 1.37 (s1 < 1) (A2)
and for the rectangular-section column by
Ts,er = log, % + 1.04 (s < 1) (A3)

When the argument is large, the Bessel function approaches (see
ref. 14)

(Ak)

The use of this approximation to calculate the lifetime parameter for
H-section columns having large values of initial crookedness gives

® 1/2
Ts,cr z‘l—g— f x+/2e%ax (A5)
51
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Making the substitution =2z = xl/2 and integrating by parts gives

®© 2
~ 1/2,7°1 e 2 dz A6
TS,CI‘ J—; (Sl e + Lll/E ( )

The integral remaining in equation (A6) is

Y
f e~27dz = f e~27dz - f
511/2 0 0

where 1 ~ <I>(sll/ 2) is the complementary error function. The asymptotic

2
e"zgdz = %—EE. - Q(sll/ail (AT)

expansion for 1 - @(sll/e) is

1-¢(sll/2>~v.?&__-2-:“—;_i.>_2<l-§§-l_+. ) ) (A8)

Thus, the critical lifetime parameter becomes

~ i J781(. 1/2 . 1 . -1/2
Ts,crNEe (Sl/ +§Sl /) (A9)

This approximation is small by less than 4 percent when sy = 10 and
is more accurate for larger values of 51+

For the rectangular-section column having large values of initial
crookedness and linear stress distribution through the thickness, the
approximate form for the critical lifetime parameter becomes

[«] 2.
~1 f r ey (A10)
T
5,¢T 6 Jg fy Bl/eee, “
o \ex

The integral in the denominator can be approximated for a very large
value of 7y by

7 ql/2 1/2
0 Vo Vor

OWW
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A numerical integration with 7y = 9.95 shows that this approximation is
about 12 percent high and improves for larger values of y. When equa-

tion (All) is substituted into equation (Al0) and an integration by parts
is carried out, the result is

Ts,cr ~ % (SB/Ee"S + ?2_ f 71/2e‘7d7> (A12)
S

The integral in equation (Al12) can be handled in the same manner as that
in equation (A5). The result can be approximated as

Ts,or ¥ q:g“s e-s (% s + 1) (A13)

This expression is low by about 10 percent for s = 10.
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TABLIE 2

COMPARISON BETWEEN CALCULATED LIFETIMES OF RECTANGULAR-SECTION

COLUMNS FOR TWO DIFFERENT CREEP LAWS

[@inear stress distribution through thickness; material,
T075-T6 aluminum alloy in compression at 600° F;
stress range for material creep data, 4.5 to 5.5 ksi]

P Power law Hyperbolic sine law
Yo % ﬁ;i Tp,crs Ts,cr?
hr hr
0.01 30 5.5 0.056 0.034
.01 30 5 255 222
.01 70 4 .188 .195
.01 100 3 1.74 .992
.01 120 2.5 5.35 1.70
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|
7/;:’" T % Before loading
lw(O)
P ——77;_’/—‘—1" TP Upon initial loading
w

P During creep

(a) Symbols for lateral displacement of middle surface of column.

z

A

2\

l:z‘—}r
h X
p |
A ) l
2

(v) Idealized H-section column.

(¢) Rectangular-section column.

Figure 1.- Symbols for lateral displacement and coordinate systems.
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Figure 2.- Column lifetime parameter from variational theorem using
hyperbolic sine creep law.
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B linear stress distribution
— — — — Equivalent H-section
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W(0)

Figure 3.- Column lifetime parameter from variational theorem using
power creep law.
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Figure 3.~ Concluded.
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Figure 4.- Lifetime parameters calculated by three different theorles
for rectangular-section column. Power creep law; n = 3.
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Figure 5.- Lifetime parameters calculated by three different theories
for rectangular-section column. Power creep law; n = 9.
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Figure 8.- Comparison between calculated and experimental lifetimes
for rectangular-section columns made of 7075-T6 aluminum alloy.
T = 600° F.
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Figure 9.- Comparison between calculated and experimental lifetimes for -
rectangular-section columns made of stabilized 2024-T4 aluminum

alloy. T = 4500 F; % = 56.5; hW, = 0.001111. .
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Figure 10.- Comparison between calculated and experimental lifetimes

for rectangular-section columns of 2024-Tk aluminum alloy, as
recelved. T = 350° F; hW, = 0.002861.



L6

g,

ksi

24

20

12

Theory: linear stress

nonlinear stress
tangent modulus

Experiment: ref. 4

Range of material

creep data

| 10

ter, hr

100 1000

Figure 11.- Comparison between calculated and experimental lifetimes
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received.
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